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A class of filters for large eddy simulations of turbulent inhomogeneous flows is
presented. A general set of rules for constructing discrete filters in complex geometry
is given and examples of such filters are presented. With these filters the commutation
error between numerical differentiation and filtering can be made arbitrarily small,
allowing for derivation of a consistent set of equations for the large scale field. The
application of such filters for explicit filtering in large eddy simulations and the issue
of boundary conditions for the filtered field are also discussed.c© 1998 Academic Press

I. INTRODUCTION

In large eddy simulation (LES) of turbulent flows the dynamics of the large-scale struc-
tures are computed, while the effect of the small-scale turbulence is modeled using a
subgrid-scale (SGS) model. The differential equations describing the space-time evolution
of the large-scale structures are obtained from the Navier–Stokes equations by applying
a low-pass filter. In order for the resulting LES equations to have the same structure as
the Navier–Stokes equations, the differentiation and filtering operations must commute. In
inhomogeneous turbulent flows, the minimum size of eddies that need to be resolved is
different in different regions of the flow. Thus the filtering operation should be performed
with a variable filter width. In general, filtering and differentiation do not commute when
the filter width is nonuniform in space.

The problem of noncommutation of differentiation and filtering with nonuniform filter
widths was studied by Ghosal and Moin [1], who proposed a new class of filters for which
the commutation error could be obtained in closed form. The application of this filter
to the Navier–Stokes equations introduces additional terms (due to commutation error)
which are of second order in the filter width. Ghosal and Moin suggested that the leading
correction term be retained if high-order numerical schemes are used to discretize the LES
equations. This procedure involves additional numerical complexities which can be avoided
by using filters with specific properties which we will discuss in this paper. Van der Ven [2]
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constructed a family of filters which commute with differentiation up to any given order in
the filter width; however, this approach is limited to a specific choice of filters and does not
address the issue of additional boundary terms that would arise in finite domains.

Due to the lack of a straightforward and robust filtering procedure for inhomogeneous
flows, most large eddy simulations performed to date have not made use of explicit filters.
The nearly universal approach for LES in complex geometries is to argue that the finite
support of the computational mesh together with the low-pass characteristics of the dis-
crete differencing operators effectively act as a filter. This procedure will be referred to
as implicit filtering since an explicit filtering operation never appears in the solution pro-
cedure. Although the technique of implicit filtering has been used extensively in the past,
there are several compelling reasons to adopt a more systematic approach. Foremost among
these is the issue of consistency. While it is true that discrete derivative operators have a
low-pass filtering effect,the associated filter acts only in the one spatial direction in which
the derivative is taken.This fact implies that each term in the Navier–Stokes equations is
acted on by a distinct one-dimensional filter, and thus there is no way to derive the discrete
equations through the application of a single three-dimensional filter. Considering this am-
biguity in the definition of the filter, it is nearly impossible to make detailed comparisons of
LES results with filtered experimental data. In the same vein it is not possible to calculate
the Leonard term [3] that appears as a computable portion in the decomposition of the
subgrid-scale stress.

The second significant limitation of the implicit filtering approach is the inability to
control numerical error. Without an explicit filter, there is no direct control in the energy in
the high-frequency portion of the spectrum. Significant energy in this portion of the spectrum
coupled with the nonlinearaties in the Navier–Stokes equations can produce significant
aliasing error. Furthermore, all discrete derivative operators become rather inaccurate for
high-frequency solution components, and this error interferes with the dynamics of the
small-scale eddies. This error can be particularly harmful [4] when the dynamic model
[5,6] is used since it relies entirely on information contained in the smallest resolved scales.
In addition, it is difficult to define the test to primary filter ratio which is needed as an input
to the dynamic procedure.

The difficulties associated with the implicit filtering approach can be alleviated by per-
forming an explicit filtering operation as an integral part of the solution process. By damping
the energy in the high-frequency portion of the spectrum it is possible to reduce or elimi-
nate the various sources of numerical error that dominate this frequency range [7]. Explicit
filtering reduces the effective resolution of the simulation, but allows the filter size to be
chosen independently of the mesh spacing. Furthermore the various sources of numerical
error that would otherwise enter the stresses sampled in the dynamic model can be con-
trolled, which can ultimately result in a more accurate estimate for the subgrid-scale model
coefficient. Finally, the shape of the filter is known exactly, which facilitates comparison
with experimental data and the ability to compute the Leonard term.

In addition, explicit filtering provides a means of reducing the various sources of nu-
merical error that become most severe for length scales on the order of the mesh size. By
damping the high-frequency portion of the solution, it is possible to control the adverse
effects of numerical error. In particular, if the filter width is held fixed as the mesh is re-
fined, the velocity field will converge to the true solution to LES equations. This should be
contrasted with the conventional approach, where the mesh is refined without the use of an
explicit filter. In the latter case, additional length scales are added each time the mesh is
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refined, and thus the process converges to a direct numerical simulation (DNS) rather than
a LES. The increase in the number of degrees of freedom as the mesh is refined also makes
it difficult to distinguish between the effects of reduced numerical error and the increase in
the range of resolved length scales. In short, the use of an explicit filter allows a means of
both assessing and minimizing the effects of numerical error in practical simulations.

In order to realize the benefits of an explicit filter, it is necessary to develop robust and
straightforward discrete filtering operators that commute with numerical differentiation. As
mentioned above, the earlier works in this area either required adding corrective terms to
the filtered Navier–Stokes equations or required the use of a restricted class of filters that
could not account properly for nonperiodic boundaries. The objective of this work is to
develop a general theory of discrete filtering in arbitrary complex geometry and to supply a
set of rules for constructing discrete filters that commute with differentiation to the desired
order.

The paper is organized as follows. In Section II we introduce a general class of variable-
width filters that commute with differentiation to any specified power of the mesh spacing.
The issue of boundary conditions for the filtered field is discussed there as well. The
theory of constructing consistent discrete filters with commutative properties is presented
in Section III. Finally, in Section IV we demonstrate the application of discrete filters for
consistent explicit filtering in large eddy simulations.

II. COMMUTATION ERROR OF FILTERING AND DIFFERENTIATION

OPERATIONS AND BOUNDARY CONDITIONS

Consider a one-dimensional fieldψ(x) defined in a finite or infinite domain [a, b]. Let
f (x) be a monotonic differentiable function which defines the mapping from the domain
[a, b] into the domain [α, β], i.e., ξ = f (x). f (x) can be associated with mapping of the
nonuniform computational grid in the domain [a, b] to a uniform grid of spacing1, where
the nonuniform grid spacing is given byh(x)=1/ f ′(x).

Let x= F(ξ) be the inverse mapping (F( f (x))= x). The filtering operation is defined
in analogous way as in [1]. Given an arbitrary functionψ(x) we obtain the new function
φ(ξ)=ψ(F(ξ)) defined on the interval [α, β]. The functionφ(ξ) is then filtered using the
definition

φ̄(ξ) = 1

1

∫ β

α

G

(
ξ − η
1

, ξ

)
φ(η) dη, (1)

whereG is a filter function, which, in general, can have different shapes in various re-
gions of the domain. This definition is more general then the one commonly used in the
LES literature and, as will be shown later, is crucial for elimination of boundary terms in
the commutation error. The introduction of filters of different shapes in different parts of
the domain is necessitated by considering inhomogeneous (nonperiodic) fields. If we as-
sume that the functionφ(ξ) is homogeneous (periodic) in [α, β], then a periodic filter can
have the same shape throughout the domain.

The filtering operation in physical space can be written as

ψ̄(x) = 1

1

∫ b

a
G

(
f (x)− f (y)

1
, f (x)

)
ψ(y) f ′(y) dy. (2)
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Note that definitions (1) and (2) are equivalent. However, for practical purposes, the filtering
operation (1) in the mapped space is much easier than (2), and we will use the former
throughout unless stated otherwise.

Commutation Error in One Spatial Dimension

Let us consider first the commutation error of filtering and derivative operations in one
spatial dimension. We define an operator that measures commutation error by

[
dψ

dx

]
≡ dψ

dx
− dψ̄

dx
. (3)

If we differentiateψ̄(x) with respect tox and use the chain rule, we obtain

dψ̄

dx
(x) = dφ̄

dξ
(ξ) f ′(x), (4)

where the filtering operation (1) is used for̄φ. Introducing the change of variablesη=
ξ −1ζ , Eq. (1) can be rewritten as

φ̄(ξ) =
∫ ξ−α

1

ξ−β
1

G(ζ, ξ)φ(ξ −1ζ) dζ. (5)

Performing the formal Taylor series expansion ofφ(ξ −1ζ) in powers of1 we obtain

φ(ξ −1ζ) =
+∞∑
k=0

(−1)k

k!
1kζ k Dk

ξ φ(ξ), (6)

whereDk
ξ ≡ dk/dξ k is the derivative operator. In general, the radius of convergence of (6) is

finite and determined by properties ofφ(ξ). Nevertheless, if we assume that the spectrum of
φ(ξ) does not include wavenumbers higher than some finite cutoff wavenumberkmax, then
as is shown in Appendix A, the series (6) is uniformly convergent everywhere in the domain
ξ ∈ [α, β]. This assumption is justified by the fact that in actual numerical simulations the
wavenumber range is limited by the support of computational mesh. Therefore, without
loss of generality, we consider the radius of convergence of (6) to be infinite. Under this
assumption,φ(ξ −1ζ)and its Taylor series are interchangeable. Consequently, substituting
(6) into (5), and changing the order of summation and integration we obtain

φ̄(ξ) =
+∞∑
k=0

(−1)k

k!
1k

(∫ ξ−α
1

ξ−β
1

ζ kG(ζ, ξ)dζ

)
Dk
ξ φ(ξ). (7)

Let Mk(ξ) be thekth filter moment defined by

Mk(ξ) =
∫ ξ−α

1

ξ−β
1

ζ kG(ζ, ξ)dζ. (8)
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Note thatζ is a nondimensional variable and thus all filter momentsMk(ξ) (k≥ 0) are
nondimensional quantities. With this definition Eq. (7) can be rewritten as

φ̄(ξ) =
+∞∑
k=0

(−1)k

k!
1k Mk(ξ)Dk

ξ φ(ξ). (9)

This series, as shown in Appendix A, may have either infinite or finite radius of convergence
depending on the filter moments. We will later show that for the discrete filters the radius
of convergence of series (9) is infinity.

Substituting (9) into (4) gives

dψ̄

dx
(x) = f ′(x)

+∞∑
k=0

(−1)k

k!
1k

(
d Mk(ξ)

dξ
Dk
ξ + Mk(ξ)Dk+1

ξ

)
φ(ξ). (10)

Applying the filtering operation (2) todψdx and using the fact that

dψ

dx
(x) = dφ

dξ
(ξ) f ′(x) (11)

we obtain that

dψ

dx
(x) = 1

1

∫ β

α

G

(
ξ − η
1

, ξ

)
dφ

dη
(η) f ′(F(η)) dη. (12)

Introducing the change of variablesη= ξ −1ζ and performing the formal Taylor series
expansion in powers of1 we obtain

f ′(F(η)) =
+∞∑
l=1

1

(l − 1)!

(+∞∑
k=1

(−1)k

k!
1kζ k Dk

ξ F(ξ)

)l−1

Dl
x f (x), (13)

dφ

dη
(η) =

+∞∑
k=0

(−1)k

k!
1kζ k Dk+1

ξ φ(ξ). (14)

In numerical applications, the mapping function is evaluated on a discrete mesh. Thus, the
assumption that the spectrum of mapping function does not contain high frequencies is also
valid. Consequently, without loss of generality the radii of convergence of series (9), (10),
(13), (14) can be considered to be infinity, and thus the original functions and their Taylor
series are interchangeable. Substituting (13) and (14) into (12), using a procedure analogous
to (7) and (9), and subtracting (10) from the resulting equation we obtain

[
dψ

dx

]
=
+∞∑
k=1

Ak Mk(ξ)1k +
+∞∑
k=0

Bk
d Mk

dξ
(ξ)1k, (15)

whereAk (k≥ 1) andBk (k≥ 0) are, in general, nonzero coefficients. Thus, as can easily be
seen, the commutation error is determined by filter momentsMk(ξ) and mapping function
F(ξ).
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FIG. 1. Filter G(ξ) (correlation function of Daubechies scaling function) with 5 (—), 9 (– – –), and 17 (–· –)
vanishing moments.

In this paper we consider a general class of filters which satisfy the properties

M0(ξ) = 1 forξ ∈ [α, β]; (16a)

Mk(ξ) = 0 fork = 1, . . . , n− 1 andξ ∈ [α, β]; (16b)

Mk(ξ) exist fork ≥ n. (16c)

There are many examples of filters which satisfy these properties when the functionφ(ξ)

is defined in the domain(−∞,+∞). One is the exponentially decaying filter defined in
[2]. Another example is the correlation function of the Daubechies scaling function used
in multiresolution analysis for constructing orthonormal wavelet bases. The correlation
function is characterized by local support and has 2N− 1 vanishing moments, whereN
is the order of the Daubechies scaling function. For details we refer to [8,9]. Examples of
such filters with 5, 9, and 17 vanishing moments are shown in Fig. 1. The corresponding
Fourier transforms,̂G(k)= ∫ +∞−∞ G(ξ) exp(−ikξ) dξ , are presented in Fig. 2. We also note
that the definition (16) does not require that the filter kernel be symmetric. This allows
us to use a wider class of filters than in [1,2]. We do not present continuous filters which
satisfy definitions (16a)–(16c), since, as will be shown later, for practical purposes, we

FIG. 2. Fourier transformĜ(k) of the filtersG(ξ) shown in Fig. 1.
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need discrete filters. For now we only assume that such filters exist and that they can be
constructed.

Using properties (16a) and (16b) it follows that

d Mk

dξ
(ξ) = 0 for k = 0, . . . ,n− 1. (17)

Consequently, the commutation error (15) is[
dψ

dx

]
= O(1n). (18)

It is easy to show that in the homogeneous (periodic) case, when the shape of the filter
does not depend on the location, and the mapping from the physical to the computational
domain is linear,Ak is exactly zero for anyk and the filter moments are not functions of
the location. This results in zero commutation error.

Generalization to Multiple Dimensions

The nonuniform filtering operation in one spatial dimension can be extended easily to
three spatial dimensions. Let us consider a three-dimensional fieldψ(x) (x= (x1, x2, x3)

T)
defined in three-dimensional domainD. Let us consider a nonlinear map of the physical
space domainD into a rectangular domainÄ= [α1, β1] × [α2, β2] × [α3, β3] given by
ξ= f(x), whereξ= (ξ1, ξ2, ξ3)

T. As in the one-dimensional case this transformation can
be associated with the mapping of a spatially nonuniform computational grid to a uniform
grid with spacings11,12,13 in the corresponding directions. Letx=F(ξ) be the inverse
mapping.

The three-dimensional filtering operation is defined the same way as in one spatial di-
mension. Given an arbitrary functionψ(x) we obtain the new functionφ(ξ) = ψ(F(ξ))
defined in the domainÄ. The functionφ(ξ) is then filtered using a sequence of three one-
dimensional filters. Thus the filtering operation in three spatial dimensions is defined by

φ̄(ξ) =
∮
Ä

3∏
i=1

1

1i
G

(
ξi − ηi

1i
, ξi

)
φ(η) d3η, (19)

where
∮
Ä

is the volume integral over domainÄ. The filtering operation in physical space
can be written as

ψ̄(x) =
∮

D

3∏
i=1

1

1i
G

(
fi (x)− fi (y)

1i
, fi (x)

)
ψ(y)J(y) d3y, (20)

whereJ(y) is the Jacobian of the transformationξ→ x. Note that the filtering operations
(19) and (20) are equivalent, but (19) is more convenient than (20) for both the analysis
of the commutation error and practical purposes. We will use (19) in what follows unless
stated otherwise.

If one performs the same type of analysis as in the one-dimensional case, it is easy to
show (see Appendix B) that the commutation error in three spatial dimensions is given by[

∂ψ

∂xk

]
= O

(
1n

1,1
n
2,1

n
3

)
. (21)
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Thus, the commutation error of differentiation and filtering operation is no more than the
error introduced by annth-order finite difference scheme, provided that the filter hasn− 1
zero moments.

Boundary Conditions for Filterd Field

It is well known that the boundary conditions for the filtered field are not necessarily
the same as those for the nonfiltered field. Nevertheless the boundary conditions for the
nonfiltered field, which we will call physical boundary conditions, are still commonly used
in large eddy simulations. In this section we will justify the use of the unfiltered field
boundary conditions for LES, at least when local structures are of the order of filter width
or larger and the appropriate filter is used.

Equations (B2) and (B4) in Appendix B are valid in every point of the domain. Thus,
applying these equations to any pointx at the boundary of the domain and using the fact
that the firstn− 1 moments are zero together with (17) we obtain

ψ̄(x) = ψ(x)+O
(
1n

1,1
n
2,1

n
3

)
, (22a)

∂ψ̄

∂xk
(x) = ∂ψ

∂xk
(x)+O

(
1n

1,1
n
2,1

n
3

)
. (22b)

The difference between the boundary conditions for the filtered and unfiltered fields is of
the ordern. Thus the physical boundary conditions can be used for the filtered field. Note
that, if desired, the number of vanishing moments for the filter close to the boundary can be
larger than that in the middle of the domain. Thus the boundary conditions for the filtered
field can approach the physical boundary conditions up to the desired order of accuracy,
provided that all local structures are appropriately resolved.

III. CONSISTENT DISCRETE FILTERING IN COMPLEX GEOMETRY

In large eddy simulation of turbulent flows, the solution is available only on a set of discrete
grid points, and thus discrete filters are required in various operations. The machinery
developed in Section II can be adapted to discrete filtering. In this section we will limit
ourselves to consideration of discrete one-dimensional filtering, since three-dimensional
filtering can be considered as an application of a sequence of three one-dimensional filters.
Also, since the filtering operation is performed in the mapped space, we will consider only
the case of uniformly sampled data.

Construction of Discrete Filters

Let us consider a one-dimensional fieldφ(ξ) defined in the domain [α, β]. {φ j } corre-
sponds to values ofφ(ξ j ) at locationsξ j =α+1 j ( j = 0, . . . , N), where1 is the sampling
interval. A one-dimensional filter is defined by

1

1
G

(
ξ j − η
1

, ξ j

)
=

L j∑
l=−K j

w j
l δ(η − ξ j+l ), (23)
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whereδ(ξ) is aδ-function with the property∫ β

α

φ(η)δ(η − ξ) dη = φ(ξ) (24)

and wj
l are weight factors. We consider the general class of asymmetric filters for which

K j 6= L j . One of the important aspects of discrete filters is that all filter moments exist and
condition (A10) holds, which means that the radii of convergence of Taylor series (9) and
other related series are infinite. Substitution of (23) into (1) gives the following definition
for a discrete filter:

φ̄ j =
L j∑

l=−K j

w j
l φ j+l . (25)

Property (23) allows us to apply results of Section II to discrete filters.
In light of the filter definition (16), the weight factors should satisfy the properties

L j∑
l=−K j

w j
l = 1, (26a)

L j∑
l=−K j

l mw j
l = 0, m= 1, . . . ,n− 1. (26b)

Equations (26) give usn constraints on wjl and are solvable if and only ifL j + K j + 1≥ n.
If L j + K j + 1> n then additional constraints can be applied.

Conditions (26) give the minimum number of degrees of freedoms for a discrete filter in
order for the derivative and filtering operations to commute to ordern. This condition gives
the minimum filter support, which can be increased by adding additional constraints. The
additional linear or nonlinear constraints can be altered depending on the desired shape of
the Fourier transform̂G(k) associated with the filter (23) given by

Ĝ(k) =
L j∑

l=−K j

w j
l e−i1kl . (27)

A desirable constraint on a Filter is that its Fourier transform be zero at the cutoff frequency,
i.e., Ĝ(π/1)= 0. The mathematical equivalent of this requirement is given by

L j∑
l=−K j

(−1)l w j
l = 0. (28)

Conditions (26) and (28) represent the minimum number of constraints which should be
imposed on the filter. Examples of weights for minimally constrained discrete filters are
given in Table I, and associated Fourier transforms for some of these filters are presented in
Figs. 3–5. Examples of the Fourier transforms of minimally constrained symmetric filters
with one, three, and five vanishing moments are presented in Fig. 3. These filters correspond
respectively to cases 1, 6, and 10 presented in Table I. We see that with the increase in the
number of vanishing moments, filter becomes a better approximation to the sharp cutoff
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TABLE I

Values of the Weight Factors and the Number of Vanishing Moments for Different

Minimally Constrained Discrete Filters

Number of
vanishing

Case moments w−3 w−2 w−1 w0 w1 w2 w3 w4 w5

1 1 1
4

1
2

1
4

2 2 7
8

3
8

− 3
8

1
8

3 2 1
8

5
8

3
8

− 1
8

4 3 15
16

1
4

− 3
8

1
4

− 1
16

5 3 1
16

3
4

3
8

− 1
4

1
16

6 3 − 1
16

1
4

5
8

1
4

− 1
16

7 4 31
32

5
32

− 5
16

5
16

− 5
32

1
32

8 4 1
32

27
32

5
16

− 5
16

5
32

− 1
32

9 4 − 1
32

5
32

11
16

5
16

− 5
32

1
32

10 5 1
64

− 3
32

15
64

11
16

15
64

− 3
32

1
64

FIG. 3. Fourier transformĜ(k) of the symmetric minimally constrained discrete filters with one (– – –), three
(– · –), and five (—) vanishing moments corresponding respectively to cases 1, 6, and 10 given in Table I.

FIG. 4. Real<{Ĝ(k)} (– · –), imaginary={Ĝ(k)} (– – –), and absolute value|Ĝ(k)| (—) of Fourier tranform
Ĝ(k) of the asymmetric discrete filter with four vanishing moments corresponding to case 8 given in Table I.
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FIG. 5. Real<{Ĝ(k)} (– · –), imaginary={Ĝ(k)} (– – –), and absolute value|Ĝ(k)| (—) of Fourier transform
Ĝ(k) of the asymmetric discrete filter with four vanishing moments corresponding to case 9 given in Table I.

filter, which is more appealing from the physical point of view. It also can be observed that
filters shown in Fig. 3 have different effective cutoff frequencies. Thus in order to control
the effective cutoff frequency, additional constraints should be introduced. The Fourier
transform of asymmetric filters with four vanishing moments corresponding to cases 8 and
9 presented in Table I are shown in Figs. 4 and 5, correspondingly. Note that the asymmetric
filters introduce phase shifts due to their nonzero imaginary parts. The imaginary part should
be minimized by introducing additional constraints. Also notice the overshoot in the real
part and absolute value of the filter shown in Fig. 4. In general, an overshoot is not desirable
since it may lead to nonphysical growth of energy. Additional constraints are necessary in
order to reduce or remove overshoot.

In the interior of the domain, in order to eliminate the phase shift, the filter should be
symmetric; i.e., the following relation should be satisfied:

w j
l = w j

−l , l = 1, . . . , L , (29a)

L j = K j = L . (29b)

In this case the filter only adjusts the amplitude of a given wavenumber component of the
solution and leaves its phase unchanged. Near the boundaries, however, it may be necessary
to make the filter asymmetric. In this case a phase shift is introduced and one is interested
in minimizing this effect.

Examples shown in Figs. 3–5 demonstrate the necessity of the introduction of additional
constraints which ensure that the resulting filter has all the desired properties. One way to
constrain the filter is to specify either its value

Ĝ(k) =
L j∑

l=−K j

w j
l e−i1kl (30a)

or the value of its derivative

Ĝ
(m)
(k) =

L j∑
l=−K j

(−i1kl)mw j
l e−i1kl (30b)

for a given frequencyk. Examples of weights for filters with three vanishing moments
and different linear constraints are given in Table II, and associated Fourier transforms
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TABLE II

Values of the Weight Factors and the Number of Vanishing Moments for Different

Linearly Constrained Discrete Filters

Number of
vanishing

Case moments Additional constraints w0 w±1 w±2 w±3 w±4 w±5

1 3 Ĝ( π
31
) = 1/2 373

1152
911
3456

203
1728

− 11
2304

− 203
6912

− 61
6912

Ĝ
(m)
( π
1
)= 0, m= 0, . . . ,5

2 3 Ĝ( π
21
)= 1/2 1

2
9
32

0 − 1
32

Ĝ
(m)
( π
1
)= 0, m= 0, . . . ,1

3 3 Ĝ( 2π
31
)= 1/2 47

72
35
144

− 11
144

1
144

Ĝ
(m)
( π
1
)= 0, m= 0, . . . ,1

for these filters are presented in Fig. 6. These filters are constrained in such a way that the
effective filter widths are 31, 21, and 3/21 (corresponding to characteristic wavenumbers
1k/π = 1/3, 1/2, 2/3). We observed that for the filters with relatively small characteristic
wavenumbers, the number of zero derivatives atk=π/1 should be considerably larger
than for filters with characteristic wavenumbers close toπ/1. If we chose this number
small enough, then the value of the Fourier transform of the filter for frequencies larger then
characteristic wavenumber may reach a large amplitude. Thus setting the large number of
derivatives atk=π/1 forces the filter to have the desired shape.

Alternative Construction of Filters with Desired Properties

Linear constraints of the form (30) are often enough to obtain the desired filter. However,
there are situations, especially for asymmetric filters, where it is difficult to choose a limited
number of constraints such that the filter is close to the desired shape. It is much more
desirable to specify the target filter function̂Gt(k) and to construct a filter which will be
close to it. One way of doing so is to find the set of filter weights which satisfy all linear

FIG. 6. Fourier transformĜ(k) of the symmetric discrete filters with different additional linear constraints
corresponding to cases 1 (– – –), 2 (–· –), and 3 (—) given in Table II.
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FIG. 7. Real<{Ĝ(k)} (– · –), imaginary={Ĝ(k)} (– – –), and absolute value|Ĝ(k)| (—) of Fourier transform
Ĝ(k) of the asymmetric discrete filter with three vanishing moments obtained using only linear constraints.

constraints and minimize the functional∫ π/1

0
(<{Ĝ(k)− Ĝt(k)})2 dk+

∫ π/1

0
(={Ĝ(k)− Ĝt(k)})2 dk, (31)

where<{z} and={z} denote correspondingly real and imaginary parts of a complex number
z. Note that integral ranges as well as relative weights for real and imaginary contributions
to the functional can be arbitrarily set depending on the filter functionĜt(k). The mathe-
matical details of the minimization are given in Appendix C. Figure 7 shows an example
of an asymmetric filter with an eight-point stencil(K = 2 and L = 5). The real part of
the filter is constrained to be 1/2 at1k/π = 1/2. The filter value and its first two deriva-
tives are constrained to be zero atk=π/1. In order to improve the filter’s characteristics
the minimization was performed, where requirements for two derivatives atk=π/1 were
relaxed and quadratic minimization as described in Appendix C was used instead. The re-
sulting filter is shown in Fig. 8. Comparing both filters we can see that the filter presented
in Fig.8 has better characteristics. We found that, in general, the minimization procedure
gives better filters than the ones obtained using only linear constraints.

FIG. 8. Real<{Ĝ(k)} (– · –), imaginary={Ĝ(k)} (– – –), and absolute value|Ĝ(k)| (—) of Fourier transform
Ĝ(k) of the asymmetric discrete filter with three vanishing moments obtained using quadratic minimization.
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Pade Filters

Discrete filters presented in this section can be considered as one example of an entire
class of discrete filters with vanishing moments. Other discrete filters can be utilized as
well. For example, one useful extension of the present algorithm is to use Pade-type filters
which are given by

Nj∑
m=−M j

v j
mφ̄ j+m =

L j∑
l=−K j

w j
l φ j+l (32)

and require the solution of linear systems of equations. The Fourier transformĜ(k) asso-
ciated with Pade-type filters is given by

Ĝ(k) =
∑L j

l=−K j
w j

l e−i1kl∑Nj

m=−M j
v j

m e−i1km
. (33)

In the case of Pade filters, conditions (26) can be rewritten as

L j∑
l=−K j

w j
l = 1, (34a)

Nj∑
m=−M j

v j
m = 1, (34b)

Nj∑
m=−M j

mi v j
m =

L j∑
l=−K j

l i w j
l , i = 1, . . . ,n− 1. (34c)

It is straightforward to constrain Pade filters to a specific value at specific frequency. Nev-

ertheless, linear constraining of filter derivativesĜ
(m)
(k) at a certain frequency requires

additional specification of filter value as well as all previous derivatives. For more details
of Pade filters we refer to [10].

The use of Pade-type filters gives more flexibility in constructing filters which are closer
to spectral cutoff filters. Examples of weights for symmetric (M j = Nj andK j = L j ) Pade
filters with five vanishing moments and different linear constraints are given in Table III,
and associated Fourier transforms are presented in Fig. 9. Comparing Figs. 6 and 9 it can
be seen that Pade filters are considerably better approximations of sharp cutoff filters.

Commutation Error of Discrete Filtering and Differentiation

In Section II we demonstrated that the commutation error of continuous filtering and
differentiation operators is determined by the number of vanishing moments of the con-
tinuous filter. As was mentioned earlier in this section, the same conclusion is valid for
discrete filters. In order to validate that discrete filtering and differentiation commute up
to the same order, we perform a numerical test, in which we differentiate numerically the
Chebyshev polynomial of the 16th order and determine the commutation error of discrete
filtering and differentiation operators. Since the derivative of the Chebyshev polynomial can
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TABLE III

Values of the Weight Factors for Different Linearly Constrained Symmetric Pade Filters

with Five Vanishing Moments

Case Additional constraints v0 v±1 v±2 v±3 w0 w±1 w±2 w±3 w±4 w±5

1 Ĝ( π
31
)= 1/2 543

128
− 1405

512
313
256

− 51
512

63
256

105
512

15
128

45
1024

5
512

1
1024

Ĝ
(m)
( π
1
)= 0, m= 0, . . . ,9

2 Ĝ( π
21
)= 1/2 7

12
0 5

24
7
24

175
768

5
48

35
1536

0 − 1
1536

Ĝ
(m)
( π
1
)= 0, m= 0, . . . ,7

3 Ĝ( 2π
31
) = 1/2 49

120
13
60

19
240

11
30

119
480

1
15

1
480

Ĝ
(m)
( π
1
)= 0, m= 0, . . . ,3

be calculated exactly, we can calculate the truncation error of the numerical differentiation
as well. We choose the nonuniform computational mesh to be given by

xj = − tanh(γ (1− 2 j /Ng))

tanh(γ )
, (35)

whereNg is the total number of grid points andγ is the stretching parameter. The choice
for the hyperbolic grid stretching is motivated by its frequent use in both DNS and LES
simulations of wall-bounded flows. For the hyperbolic tangent grid, the ratio of largest to
smallest grid size is a function of stretching parameterγ and is given by cosh3 γ/sinhγ . In
this test we chooseγ = 2.75, which makes this ratio approximately 62. The differentiation
operator is chosen to be fourth-order accurate on the nonuniform grid. Figure 10 shows
the truncation error of finite difference scheme and commutation errors as a function of the
total number of gird points for filters with different number of zero moments. The results
presented in Fig. 10 confirm that the discrete filtering and differentiation operators commute
up to thenth order, provided that the discrete filter hasn− 1 vanishing moments.

FIG. 9. Fourier transformation̂G(k) of the symmetric Pade filters with different additional linear constraints
corresponding to cases 1 (– – –), 2 (–· –), and 3 (—) given in Table III.
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FIG. 10. Truncation error (—) of the differentiation operator and commutation error for discrete filtering
and differentiation operations for the filters with one (· · ·), three (– – –), five (–· –), and seven (– – –) vanishing
moments.

IV. EQUATIONS FOR LARGE EDDY SIMULATION AND DISCRETE FILTERING

If we apply the continuous filtering operation (20) with nonuniform filter width to the
Navier–Stokes equations and ignore terms of order O(1n

i ), associated with the residual
commutation error, we obtain the filtered equations of motion. For an incompressible flow
the nondimensional equations take the form

∂ūi

∂xi
= 0, (36)

∂ūi

∂t
+ ∂ui u j

∂xj
= − ∂ p̄

∂xi
+ 1

Re

∂2ūi

∂xj ∂xj
. (37)

Equation (37) can be rewritten in the form

∂ūi

∂t
+ ∂ūi ū j

∂xj
= − ∂ p̄

∂xi
− ∂τ̄ i j

∂xj
+ 1

Re

∂2ūi

∂xj ∂xj
, (38)

where the effect of small scales appears through the SGS stress term given by

τ̄ i j = ui u j − ūi ū j , (39)

which should be modeled. Note that in contrast with standard LES formulation, the nonlinear
terms such as̄ui ū j andτi j are treated with a secondary filtering operation to eliminate the
generation of frequencies higher than the characteristic wavenumber for the chosen filter.
This is how the filter operator enters the solution procedure. The resulting (explicitly) filtered
Navier–Stokes equations (36), (38), (39) govern the evolution of large scales of motion. As
was demonstrated in the previous sections, the boundary conditions for filtered velocity
components can be taken to be the physical boundary conditions.

A possible drawback of this new formulation is that Eq. (38) is not Galilean invari-
ant provided that modeled subgrid-scale stresses (39) are Galilean invariant and nonsharp
cutoff filter is utilized. Non-Galilean invariance follows from the appearance of the term
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cj ∂( ¯̄ui − ūi )/∂xj , wherecj is the uniform translation velocity. The error is seen to be pro-
portional to the difference between the singly and doubly filtered velocity. This difference
will be zero for a sharp cutoff filter, but will not vanish in the general case. The spectral con-
tent of the error is proportional tôG(k)(1− Ĝ(k)),whereĜ(k) is the filter transfer function
andk is the wave vector. This fact implies that error is only generated in the wavenumber
band whereĜ(k) differs significantly from 0 or 1. Thus it is possible to minimize the error
by constructing the explicit filter to be as close as possible to a sharp cutoff.

The subgrid-scale stress (39) can be modeled using the dynamic procedure as in [5,6]. The
dynamic procedure can utilize different models. We will illustrate the dynamic procedure
using the Smagorinsky model given by

τ̄ i j − 1

3
δi j τ̄ kk = −212 C|S̄|S̄i j , (40)

whereδi j is the Kronecker delta,̄Si j = (∂ūi /∂xj + ∂ū j /∂xi )/2, |S̄| = (2S̄i j S̄i j )
1/2, C is

the Smagorinsky coefficient, and1 is the effective filter width. Once again the nonlinear
terms are filtered to ensure that they have the same frequency content as other terms of the
equations.

If we apply a coarser spatial filter, called the “test” filter, to the filtered Navier–Stokes
equation (38) we obtain

∂ ˆ̄ui

∂t
+ ∂ ˆ̄ui ˆ̄u j

̂

∂xj
= ∂ ˆ̄p

∂xi
− ∂

ˆ̄Ti j

∂xj
+ 1

Re

∂2 ˆ̄ui

∂xj ∂xj
, (41)

where subtest-scale stress

ˆ̄Ti j = ui u ĵ − ˆ̄ui ˆ̄u j
̂

(42)

is similarly approximated by

ˆ̄Ti j − 1

3
δi j

ˆ̄Tkk = −21̂2 C| ˆ̄S| ˆ̄Si ĵ , (43)

where1̂ is the effective test filter width. Note that we assumed that Smagorinsky coefficients
for both subgrid- and subtest-scale stresses are the same. The resolved turbulent stresses

Li j = ūi ū ĵ − ˆ̄ui ˆ̄u j
̂

, which represent the contribution of the smallest resolved scales to the
Reynolds stresses and can be computed exactly due to the explicit filtering, are related to
the subgrid-scale stresses ¯τ i j and ˆ̄Ti j by the identity

Li j = ˆ̄Ti j − ˆ̄τ i j . (44)

Combining (40), (43), and (44) we obtain

Li j − 1

3
δi j Lkk = −21̂2 C| ˆ̄S| ˆ̄Si ĵ + 212 C| ˆ̄S| ˆ̄Si ĵ . (45)

Equation (45) is solved in the least square sense in an analogous manner as in [6]. Briefly,C
can be chosen to minimize the sum of the squares of the residualsEi j Ei j where the residual
is given by

Ei j = Li j − 1

3
δi j Lkk + 21̂2 C| ˆ̄S| ˆ̄Si ĵ − 212 C|S̄|S̄i ĵ . (46)
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Note thatC appears above only as12C or 1̂2C, and thus there is no need to explicitly
provide the values for1 and1̂. The only parameter which needs to be prescribed is the
filter width ratio, which is given by the inverse ratio of cutoff frequencies.

In order to perform numerical simulations, Eqs. (36), (38), (39) should be discretized using
a finite difference scheme of the desired order. We emphasize that the local grid spacing
should be finer than the local filter width to ensure that the grid is adequate to resolve the
filtered field. Consequently, if the filter width is of the same order as the computational
grid, application of the filter which hasn−1 zero moments to the Navier–Stokes equations
introduces an error that is no more than the error introduced by annth-order finite difference
scheme used to discretize the LES equations. In other words, in order to perform a consistent
derivation of the discrete LES equations, the filter has to have at leastn− 1 zero moments
if nth-order finite differencing is used.

V. CONCLUSIONS

We have formulated general requirements for a filter having a nonuniform filter width
which ensure that the differentiation and filtering operations commute to any desired order.
Minimization of the commutation error is achieved by requiring that the filter has a number
of vanishing moments. Application of this filter to the Navier–Stokes equations results in
the standard LES equations which can be solved on a nonuniform computational grid. The
commutation error can be neglected provided that the filter hasn− 1 vanishing moments,
wheren is the order of the numerical discretization scheme used to solve the LES equations.
It was shown that the error associated with the implementation of the same boundary condi-
tions as for Navier–Stokes equations is of the same order or smaller as the error associated
with the finite difference operator. A general set of rules for constructing discrete filters in
complex geometries is provided. The use of these filters ensures consistent derivation of
discrete LES equations. The resulting discrete filtering operation is very simple and effi-
cient. We have also described the general procedure for using an explicit filter in LES to
obtain a solution consistent with the true filtered Navier–Stokes equations. The same filter
can also be used for direct comparison between experimental and LES results.

APPENDIX A

The purpose of this appendix is to validate the use of Taylor series expansions in the
analysis of the commutation error.

Let us assume that spectrum of a given one-dimensional fieldφ(ξ) does not contain
wavenumbers higher thankmax. Thenφ(ξ) can be written in terms of the Fourier integral
given by

φ(ξ) =
∫ kmax

−kmax

φ̂(k) e−ikξ dk, (A1)

whereφ̂(k) contains both continuouŝφc(k) and discretêφd(ki ) spectra given by

φ̂(k) = φ̂c(k)+
Ld∑

i=−Ld

φ̂d(ki )δ(k− ki ). (A2)
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Themth derivative ofφ(ξ) with respect toξ can be written as

φ(m)(ξ) = (−i )m
∫ kmax

−kmax

kmφ̂(k) e−ikξ dk, (A3)

from which it is easy to obtain the inequality

∣∣φ(m)(ξ)∣∣ ≤ ∫ kmax

−kmax

|k|m|φ̂(k)| dk. (A4)

Using Hölder’s integral inequality we obtain

∣∣φ(m)(ξ)∣∣ ≤ (∫ kmax

−kmax

k2m dk

)1/2(∫ kmax

−kmax

|φ̂(k)|2 dk

)1/2

. (A5)

Writing the total energy as

E =
∫ kmax

−kmax

|φ̂(k)|2 dk (A6)

we obtain the inequality

∣∣φ(m)(ξ)∣∣ ≤ (2Ekmax

2m+ 1

)1/2

km
max. (A7)

Using (A7), the following sequence of inequalities can be obtained,∣∣∣∣∣
+∞∑
m=0

(−1)m

m!
1mζmDm

ξ φ
(m)(ξ)

∣∣∣∣∣ ≤
+∞∑
m=0

1m|ζ |m
m!

∣∣φ(m)(ξ)∣∣
≤ (2Ekmax)

1/2
+∞∑
m=0

(kmax1|ζ |)m
m!(2m+ 1)1/2

≤ (2Ekmax)
1/2 ekmax1|ζ |, (A8)

which proves the absolute and thus uniform convergence of Taylor series (6).
Applying inequality (A7) to the analysis of absolute convergence of Taylor series (9) we

obtain that∣∣∣∣∣
+∞∑
m=0

(−1)m

m!
1mMm(ξ)φ(m)(ξ)

∣∣∣∣∣ ≤
+∞∑
m=0

1

m!
1m|Mm(ξ)|∣∣φ(m)(ξ)∣∣

≤ (2Ekmax)
1/2
+∞∑
m=0

(kmax1)
m|Mm(ξ)|

m!(2m+ 1)1/2
. (A9)

Comparing two consecutive terms of the latter series, it can easily be seen that the series
converges for arbitrary1 provided that

lim
m→∞

|Mm+1(ξ)|
|Mm(ξ)|(m+ 1)

= 0. (A10)
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It is easy to show that the limit always holds for filters with finite support. If the limit (A10)
is finite and equal to 1/C then the series (9) converges under the condition that

kmax1 ≤ C. (A11)

This condition holds for some filters with infinite support such as Gaussian filters.

APPENDIX B

The purpose of this appendix is to give mathematical details of the analysis of the com-
mutation error in three spatial dimensions.

Differentiating Eq. (20), written as in (19), gives

∂ψ̄

∂xk
(x) =

3∑
j=1

∂φ̄

∂ξ j
(ξ)

∂ f j

∂xk
(x). (B1)

Introducing the change of variablesηi = ξi −1i ζi , performing the formal Taylor series
expansion in powers of1i , and changing the order of summation and integration we obtain

φ̄(ξ) =
(

3∏
i=1

+∞∑
ki=0

(−1)ki

ki !
1

ki
i Mki

i (ξi )D
ki
ξi

)
φ(ξ), (B2)

where

Mk
i (ξi ) =

∫ ξi −αi
1i

ξi −βi
1i

ζ k
i G(ζi , ξi ) dζi . (B3)

Substituting (B2) into (B1) gives

∂ψ̄

∂xk
(x) =

3∑
j=1

∂ f j

∂xk
(x)

(∏
i 6= j

+∞∑
ki=0

(−1)ki

ki !
1

ki
i Mki

i (ξi )D
ki
ξi

)

×
( +∞∑

kj=0

(−1)kj

k j !
1

kj

j

(
d M

kj

j

dξ j
(ξ j )D

kj

ξ j
+ M

kj

j (ξ j )D
kj+1
ξ j

))
φ(ξ), (B4)

where the two terms in parentheses appear owing to the fact that a derivative in one spatial
direction affects only the filtering operation in this direction (terms in second parentheses)
and leaves the filtering operations in other two directions intact (terms in first parentheses).
Applying the filtering operation (20) to∂ψ/∂xk, using the fact that

∂ψ

∂xk
(x) =

3∑
j=1

∂φ

∂ξ j
(ξ)

∂ f j

∂xk
(x), (B5)
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and changing the order of summation and integration, the following equation is obtained:

∂ψ

∂xk
(x) =

3∑
j=1

∮
D

3∏
i=1

1

1i
G

(
ξi − ηi

1i
, ξi

)
∂ f j

∂xk
(y)

∂φ

∂η j
(η) d3η. (B6)

Introducing the change of variablesηi = ξi −1i ζi and performing the formal Taylor series
expansion in powers of1i we obtain

∂ f j

∂xk
(y) =

+∞∑
l=0

1

l !

(
3∑

m=1

+∞∑
k=1

(−1)k

k!

(
3∑

i=1

1i ζi Dξi

)k

Fm(ξ)Dxm

)l

Dxk f j (x), (B7)

∂φ

∂η j
(η) =

+∞∑
k=0

(−1)k

k!

(
3∑

i=1

1i ζi Dξi

)k

Dξ j φ(ξ). (B8)

Once again, without loss of generality, we assume that radii of convergence of the above
series are infinite. Note that Eqs. (B7)–(B8) are the three-dimensional analogs of Eqs. (13)–
(14). Substituting (B7)–(B8) into (B6), using a procedure analogous to (19) and (B2), and
combining terms of the same order we obtain

[
∂ψ

∂xk

]
=
+∞∑
i=0

+∞∑
j=0

+∞∑
l=0

(
Ai jl Mi

1(ξ1)M
j

2 (ξ2)M
l
3(ξ3)

+
3∑

m=0

Bm
i jl

d

dξm
Mi

1(ξ1)M
j

2 (ξ2)M
l
3(ξ3)

)
1i

11
j
21

l
3, (B9)

where Ai jl and Bm
i jl (i, j, l ≥ 0, m= 1, 2, 3) are, in general, nonzero coefficients with

the exception ofA000, which is always zero. Using the fact thatA000= 0, Mk
i (ξi )= 0

for k= 1, . . . ,n− 1, and property (17) we obtain for the commutation error given
by (21).

APPENDIX C

In this appendix we give the mathematical details of the minimization procedure described
in Section III, which is used for constructing discrete filters with desired properties. The
procedure consists in specifying a target filter functionĜt(k) in wave number space and
minimizing the difference between it and the Fourier transform of the discrete filter.

Without loss of generality let us consider the case of uniform grid with1= 1. Then the
Fourier transformĜ(k) of the discrete filter is given by (27). Without loss of generality
Eq. (27) can be rewritten by omitting indexj associated with the location of the filter. Then
we have

Ĝ(k) =
L∑

l=−K

wl e−ikl . (C1)

Let N= K + L + 1 be the total number of degrees of freedom;Ll is the total number of
liner constraints which include both (26) and (30) constraints,Lr = N − Ll is the number
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of remaining degrees of freedom. Then the filter weights are given by

wl = w0
l +

Lr∑
l=1

Almzm, (C2)

wherezm are real coefficients for the remaining degrees of freedom andAlm is realN× Lr

influence matrix. In the case whenzk are chosen to be one of the filter weights, the appropriate
w0

l will be zero. Substituting (C2) into (C1) we obtain

Ĝ(k) = Ĝ0(k)+
Lr∑

m=1

(
L∑

l=−K

Alm e−ikl

)
zm = Ĝ0(k)+

Lr∑
m=1

(am (k)+ ibm (k))zm, (C3)

where

am(k) =
L∑

l=−K

Alm cos(kl) (C4)

and

bm(k) = −
L∑

l=−K

Alm sin(kl). (C5)

Let Ĝt(k) be a target filter function, which we want̂G(k) to approach. Substituting (C3)
into (31) we obtain the functional

8
(
z1, . . . , zLr

) = ∫ π

0

(
Lr∑

m=1

am(k)zm −<{Ĝt(k)− Ĝ0(k)}
)2

dk

+
∫ π

0

(
Lr∑

m=1

bm(k)zm − ={Ĝt(k)− Ĝ(k)}
)2

dk. (C6)

Coefficientszm can be chosen to minimize the functional8(z1, . . . , zLr ). It is easy to show
that the minimum of the functional8(z1, . . . , zLr ) is obtained whenzm is the solution of
the system of linear equations

Lr∑
m=1

Almzm = Rl , (C7)

whereAlm is a positive definiteLr × Lr matrix given by

Alm =
∫ π

0
(al (k)am(k)+ bl (k)bm(k)) dk (C8)

andRl is a vector given by

Rl =
∫ π

0
(al (k)<{Ĝt(k)− Ĝ0(k)} + bl (k)={Ĝt(k)− Ĝ(k)}) dk. (C9)
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